
Pontem Network -
Liquidswap DEX

Flash Loans
Move Smart Contract Security

Audit

Prepared by: Halborn

Date of Engagement: September 23rd, 2022 - September 27th, 2022

Visit: Halborn.com

https://halborn.com


DOCUMENT REVISION HISTORY 2

CONTACTS 2

1 EXECUTIVE OVERVIEW 3

1.1 INTRODUCTION 4

1.2 AUDIT SUMMARY 4

1.3 TEST APPROACH & METHODOLOGY 4

RISK METHODOLOGY 5

1.4 SCOPE 7

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 8

3 FINDINGS & TECH DETAILS 9

3.1 (HAL-01) UNFINISHED CODE - INFORMATIONAL 11

Description 11

Code Location 11

Risk Level 14

Recommendation 14

Remediation Plan 14

1



DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 09/23/2022 Lukasz Mikula

0.2 Draft Version 09/27/2022 Lukasz Mikula

0.3 Draft Review 09/29/2022 Gabi Urrutia

1.0 Remediation Plan 09/30/2022 Lukasz Mikula

1.1 Remediation Plan Review 09/30/2022 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Luis Quispe
Gonzales

Halborn Luis.QuispeGonzales@halborn.com

Lukasz Mikula Halborn Lukasz.Mikula@halborn.com

2

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Luis.QuispeGonzales@halborn.com
mailto:Lukasz.Mikula@halborn.com


3

EXECUTIVE OVERVIEW



1.1 INTRODUCTION

Pontem Network engaged Halborn to conduct a security audit on their smart

contracts beginning on September 23rd, 2022 and ending on September 27th,

2022 . The security assessment was scoped to the smart contracts provided

in the GitHub repository Liquidswap, commit hashes and further details

can be found in the Scope section of this report.

1.2 AUDIT SUMMARY

The team at Halborn was provided five days for the engagement and assigned

one full-time security engineer to audit the security of the smart con-

tract. The security engineer is a blockchain and smart-contract security

expert with advanced penetration testing, smart-contract hacking, and

deep knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Ensure that smart contract functions operate as intended

• Identify potential security issues with the smart contracts

In summary, Halborn found the contract to follow secure development best

practices, resulting in only an informational finding with negligible

security impact.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual review of the code and automated

security testing to balance efficiency, timeliness, practicality, and

accuracy in regard to the scope of the smart contract audit. While

manual testing is recommended to uncover flaws in logic, process, and

implementation; automated testing techniques help enhance coverage of

smart contracts and can quickly identify items that do not follow security

4

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/pontem-network/liquidswap


best practices. The following phases and associated tools were used

throughout the term of the audit:

• Research into the architecture, purpose, and use of the platform.

• Smart contract manual code review and walk-through to identify any

logic issue.

• Thorough assessment of safety and usage of critical Rust variables

and functions in scope that could lead to arithmetic related vul-

nerabilities.

• Test coverage review (aptos move test).

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the risk

assessment methodology by measuring the LIKELIHOOD of a security incident

and the IMPACT should an incident occur. This framework works for commu-

nicating the characteristics and impacts of technology vulnerabilities.

The quantitative model ensures repeatable and accurate measurement while

enabling users to see the underlying vulnerability characteristics that

were used to generate the Risk scores. For every vulnerability, a risk

level will be calculated on a scale of 5 to 1 with 5 being the highest

likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

5

EX
EC

UT
IV

E
OV

ER
VI

EW



The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

6

EX
EC

UT
IV

E
OV

ER
VI

EW



1.4 SCOPE

1. Move Smart Contract

(a) Repository: liquidswap

(b) Commit ID: 37705a42d8962a36472e4ae3ba93fb1bb38bdb49

(c) Contracts in scope:

• liquidity_pool.move

(d) Functions in scope:

• flashloan

• pay_flashloan

• all variables and subfunctions they utilize

Out-of-scope: External libraries and financial related attacks.

7

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/pontem-network/liquidswap
https://github.com/pontem-network/liquidswap/tree/37705a42d8962a36472e4ae3ba93fb1bb38bdb49


2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 0 0 1

IM
PA
CT

LIKELIHOOD

(HAL-01)

8

EX
EC

UT
IV

E
OV

ER
VI

EW



SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

(HAL-01) UNFINISHED CODE Informational ACKNOWLEDGED

9

EX
EC

UT
IV

E
OV

ER
VI

EW



10

FINDINGS & TECH
DETAILS



3.1 (HAL-01) UNFINISHED CODE -
INFORMATIONAL

Description:

The code does not have available entry function. While the current

implementation of flashloan and pay_flashloan was checked, it does not

guarantee that a future entry point function will not contain potential

issues.

Code Location:

Listing 1: liquidswap/sources/swap/liquidity_pool.move

359 public fun flashloan <X, Y, Curve >( x_loan: u64 , y_loan: u64): (

ë Coin <X>, Coin <Y>, Flashloan <X, Y, Curve >)

360 acquires LiquidityPool , EventsStore {

361 assert_no_emergency ();

362

363 assert!(coin_helper ::is_sorted <X, Y>(),

ë ERR_WRONG_PAIR_ORDERING);

364 assert!(exists <LiquidityPool <X, Y, Curve >>(

ë @liquidswap_pool_account), ERR_POOL_DOES_NOT_EXIST);

365

366 assert_pool_unlocked <X, Y, Curve >();

367

368 assert!(x_loan > 0 || y_loan > 0, ERR_EMPTY_COIN_LOAN);

369

370 let pool = borrow_global_mut <LiquidityPool <X, Y, Curve >>(

ë @liquidswap_pool_account);

371

372 let reserve_x = coin:: value (&pool.coin_x_reserve);

373 let reserve_y = coin:: value (&pool.coin_y_reserve);

374

375 // Withdraw expected amount from reserves.

376 let x_loaned = coin:: extract (&mut pool.coin_x_reserve ,

ë x_loan);

377 let y_loaned = coin:: extract (&mut pool.coin_y_reserve ,

ë y_loan);

378

11

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



379 // The pool will be locked after the loan until payment.

380 pool.locked = true;

381

382 let events_store = borrow_global_mut <EventsStore <X, Y,

ë Curve >>( @liquidswap_pool_account);

383 event :: emit_event(

384 &mut events_store.loan_handle ,

385 FlashloanEvent <X, Y, Curve > {

386 x_loan ,

387 y_loan ,

388 });

389

390 update_oracle(pool , reserve_x , reserve_y);

391

392 // Return loaned amount.

393 (x_loaned , y_loaned , Flashloan <X, Y, Curve > {

394 pool_addr: @liquidswap_pool_account ,

395 x_loan ,

396 y_loan ,

397 })

398 }

399

400 /// Pay flash loan coins.

401 /// In the most of situation only X or Y coin argument has

ë value.

402 /// Because an user usually loans only one coin , yet function

ë allow to loans both coin.

403 /// * `x_in ` - X coins to pay.

404 /// * `y_in ` - Y coins to pay.

405 /// * `loan ` - data about flashloan.

406 /// Returns both loaned X and Y coins: `(Coin <X>, Coin <Y>,

ë Flashloan <X, Y) `.

407 public fun pay_flashloan <X, Y, Curve >(

408 x_in: Coin <X>,

409 y_in: Coin <Y>,

410 loan: Flashloan <X, Y, Curve >

411 ) acquires LiquidityPool {

412 assert_no_emergency ();

413

414 assert!(coin_helper ::is_sorted <X, Y>(),

ë ERR_WRONG_PAIR_ORDERING);

415 assert!(exists <LiquidityPool <X, Y, Curve >>(

ë @liquidswap_pool_account), ERR_POOL_DOES_NOT_EXIST);

416

12

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



417 let Flashloan { pool_addr , x_loan , y_loan } = loan;

418

419 let x_in_val = coin:: value (&x_in);

420 let y_in_val = coin:: value (&y_in);

421

422 assert!(x_in_val > 0 || y_in_val > 0, ERR_EMPTY_COIN_IN);

423

424 let pool = borrow_global_mut <LiquidityPool <X, Y, Curve >>(

ë pool_addr);

425

426 let x_reserve_size = coin:: value (&pool.coin_x_reserve);

427 let y_reserve_size = coin:: value (&pool.coin_y_reserve);

428

429 // Reserve sizes before loan out

430 x_reserve_size = x_reserve_size + x_loan;

431 y_reserve_size = y_reserve_size + y_loan;

432

433 // Deposit new coins to liquidity pool.

434 coin:: merge (&mut pool.coin_x_reserve , x_in);

435 coin:: merge (&mut pool.coin_y_reserve , y_in);

436

437 // Confirm that lp_value for the pool hasn 't been reduced.

438 // For that , we compute lp_value with old reserves and

ë lp_value with reserves after swap is done ,

439 // and make sure lp_value doesn 't decrease

440 let (x_res_new_after_fee , y_res_new_after_fee) =

441 new_reserves_after_fees_scaled <Curve >(

442 coin:: value (&pool.coin_x_reserve),

443 coin:: value (&pool.coin_y_reserve),

444 x_in_val ,

445 y_in_val ,

446 );

447 assert_lp_value_is_increased <Curve >(

448 pool.x_scale ,

449 pool.y_scale ,

450 (x_reserve_size as u128),

451 (y_reserve_size as u128),

452 x_res_new_after_fee ,

453 y_res_new_after_fee ,

454 );

455 // third of all fees goes into DAO

456 split_third_of_fee_to_dao(pool , x_in_val , y_in_val);

457

13

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



458 // As we are in same block , don 't need to update oracle ,

ë it 's already updated during flashloan initalization.

459

460 // The pool will be unlocked after payment.

461 pool.locked = false;

462 }

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to test the future implementation of entry function

that will expose flashloans to users.

Remediation Plan:

ACKNOWLEDGED: The Pontem Network team acknowledged this finding.

14

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



THANK YOU FOR CHOOSING


	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan



