
Liquidswap

Smart Contract Security Assessment

November 3, 2022

Prepared for:

Boris Povod and Igor Demko

Pontem Network

Prepared by:

Daniel Lu and Jacob Farrell

Zellic Inc.



Contents

About Zellic 3

1 Executive Summary 4

2 Introduction 6

2.1 About Liquidswap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Project Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Project Timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Detailed Findings 10

3.1 Inaccuracy in liquidswap:)stable_curve computations . . . . . . . . . 10

3.2 Implicit precision loss in stable_curve:)lp_value . . . . . . . . . . . . . 13

3.3 Incorrect rounding behavior in router:)get_coin_in_with_fees . . . . . 15

3.4 lp_account:)retrieve_signer_cap should be a friend to liquidity_pool 18

4 Formal Verification 19

4.1 liquidswap:)math . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 liquidswap:)emergency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Discussion 21

5.1 Test coverage missing for stable_curve:)get_y . . . . . . . . . . . . . . 21

5.2 Tests fail after breaking Aptos change . . . . . . . . . . . . . . . . . . . . 21

5.3 Outdated comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.4 Unused struct member in liquidity_pool:)Flashloan . . . . . . . . . . 21

Zellic 1 Pontem Network



5.5 Flashloan implementation depends on Aptos VM correctness . . . . . . 22

5.6 Liquidswap allows any tokens and pools to be made . . . . . . . . . . . 22

6 Audit Results 23

6.1 Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Zellic 2 Pontem Network



About Zellic

Zellic was founded in 2020 by a team of blockchain specialists with more than a
decade of combined industry experience. We are leading experts in smart contracts
and Web3 development, cryptography, web security, and reverse engineering. Be-
fore Zellic, we founded perfect blue, the top competitive hacking team in the world.
Since then, our team has won countless cybersecurity contests and blockchain secu-
rity events.

Zellic aims to treat clients on a case-by-case basis and to consider their individual,
unique concerns and business needs. Our goal is to see the long-term success of
our partners rather than simply provide a list of present security issues. Similarly, we
strive to adapt to our partners’ timelines and to be as available as possible. To keep
up with our latest endeavors and research, check out our website zellic.io or follow
@zellic_io on Twitter. If you are interested in partnering with Zellic, please email us at
hello@zellic.io or contact us on Telegram at https://t.me/zellic_io.

Zellic 3 Pontem Network

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io
https://t.me/zellic_io


1 Executive Summary

Zellic conducted an audit for Pontem Network from October 10th to October 14th,
2022.

Our general overview of the code is that it was very well-organized and structured.
The code coverage is high, with tests included for the vast majority of functions.

We applaud Pontem Network for their attention to detail and diligence in maintaining
high code quality standards in the development of Liquidswap. The documentation
was adequate, although it could be improved.

Zellic thoroughly reviewed the Liquidswap codebase to find protocol-breaking bugs
as definedby the documentation and to find any technical issues outlined in theMethod-
ology section (2.2) of this document.

Specifically, taking into account Liquidswap’s threat model, we focused heavily on is-
sues that would break core invariants such as the liquidity pool market maker function
values.

During our assessment on the scoped Liquidswap contracts, we discovered four find-
ings. Fortunately, no critical issues were found. Of the four findings, all were of low
severity.

Additionally, Zellic recorded its notes and observations, as well as sample specifi-
cations for Pontem Network’s benefit in the Discussion section (5) at the end of the
document.

Zellic 4 Pontem Network



Breakdown of Finding Impacts

Impact Level Count

Critical 0

High 0

Medium 0

Low 4

Informational 0

Low

Zellic 5 Pontem Network



2 Introduction

2.1 About Liquidswap

Liquidswap is the first AMM (automated market maker) on the Aptos blockchain, cre-
ated to enable safe and decentralized token swaps. The protocol uses smart contracts
developed by the PontemNetwork team, written in theMove language, and published
on the Aptos mainnet.

2.2 Methodology

During a security assessment, Zellic works through standard phases of security audit-
ing including both automated testing and manual review. These processes can vary
significantly per engagement, but themajority of the time is spent on a thoroughman-
ual review of the entire scope.

Alongside a variety of open-source tools and analyzers used on an as-needed basis,
Zellic focuses primarily on the following classes of security and reliability issues:

Basic coding mistakes. Many critical vulnerabilities in the past have been caused by
simple, surface-level mistakes that could have easily been caught ahead of time by
code review. We analyze the scoped smart contract code using automated tools to
quickly sieve out and catch these shallow bugs. Depending on the engagement, we
may also employ sophisticated analyzers such as model checkers, theorem provers,
fuzzers, and so forth as necessary. We also perform a cursory review of the code to
familiarize ourselves with the contracts.

Business logic errors. Business logic is the heart of any smart contract application.
We manually review the contract logic to ensure that the code implements the ex-
pected functionality as specified in the platform’s design documents. We also thor-
oughly examine the specifications and designs themselves for inconsistencies, flaws,
and vulnerabilities. This involves use cases that open the opportunity for abuse, such
as flawed tokenomics or share pricing, arbitrage opportunities, and so forth.

Complex integration risks. Several high-profile exploits have not been the result of
any bug within the contract itself; rather, they are an unintended consequence of the
contract’s interaction with the broader DeFi ecosystem. We perform a meticulous
review of all of the contract’s possible external interactions and summarize the asso-
ciated risks: for example, flash loan attacks, oracle pricemanipulation, MEV/sandwich
attacks, and so forth.

Zellic 6 Pontem Network



Codematurity.We review for possible improvements in the codebase in general. We
look for violations of industry best practices and guidelines and code quality stan-
dards. We also provide suggestions for possible optimizations, such as gas optimiza-
tion, upgradeability weaknesses, centralization risks, and so forth.

For each finding, Zellic assigns it an impact rating based on its severity and likelihood.
There is no hard-and-fast formula for calculating a finding’s impact; we assign it on
a case-by-case basis based on our professional judgment and experience. As one
would expect, both the severity and likelihood of an issue affect its impact; for in-
stance, a highly severe issue’s impact may be attenuated by a very low likelihood. We
assign the following impact ratings (ordered by importance): Critical, High, Medium,
Low, and Informational.

Similarly, Zellic organizes its reports such that the most important findings come first
in the document rather than being ordered on impact alone. Thus, wemay sometimes
emphasize an “Informational” finding higher than a “Low” finding. The key distinction
is that although certain findings may have the same impact rating, their importance
may differ. This varies based on numerous soft factors, such as our clients’ threat
models, their business needs, their project timelines, and so forth. We aim to provide
useful and actionable advice to our partners that consider their long-term goals rather
than simply provide a list of security issues at present.

2.3 Scope

The engagement involved a review of the following targets:

Zellic 7 Pontem Network



Liquidswap Contracts

Repository https://github.com/pontem-network/liquidswap

Versions 23e5c828c0a34ea9f328e816df2b9c52e187ee1f

Programs • ./liquidswap_init/sources/lp_account.move
• ./liquidswap_lp/sources/lp_coin.move
• ./sources/swap/dao_storage.move
• ./sources/swap/router.move
• ./sources/swap/scripts.move
• ./sources/swap/curves.move
• ./sources/swap/liquidity_pool.move
• ./sources/swap/emergency.move
• ./sources/libs/stable_curve.move
• ./sources/libs/math.spec.move
• ./sources/libs/math.move
• ./sources/libs/coin_helper.move

Type Move

Platform Aptos

2.4 Project Overview

Zellic was contracted to perform a security assessment with two consultants for a
total of two person-weeks. The assessment was conducted over the course of one
calendar week.

Contact Information

The following project managers were associated with the engagement:

Jasraj Bedi, Co-founder
jazzy@zellic.io

Stephen Tong, Co-founder
stephen@zellic.io

The following consultants were engaged to conduct the assessment:

Daniel Lu, Engineer
daniel@zellic.io

Jacob Farrell, Engineer
jacob@zellic.io

2.5 Project Timeline

The key dates of the engagement are detailed below.

Zellic 8 Pontem Network

https://github.com/pontem-network/liquidswap
mailto:jazzy@zellic.io
mailto:stephen@zellic.io
mailto:daniel@zellic.io
mailto:jacob@zellic.io


October 10, 2022 Start of primary review period

October 14, 2022 End of primary review period

Zellic 9 Pontem Network



3 Detailed Findings

3.1 Inaccuracy in liquidswap:)stable_curve computations

• Target: liquidswap::stable_curve
• Category: Business Logic
• Likelihood: Low

• Severity: Low
• Impact: Low

Description

Liquidswap provides peripheral modules for interacting with the protocol. The li
quidswap:)stable_curve module exposes helper functions for computing exchange
amounts.

Liquidity pools for correlated coins utilize a different curve. Specifically, if the reserves
of two coins are x and y, then it maintains that c = x ^ 3 y + y ^ 3 x must increase
across exchanges. To help compute quantities, the internal function stable_curve:)g
et_y is used to find y given x and c.

fun get_y(x0: U256, xy: U256, y: U256): U256 {
let i = 0;

let one_u256 = u256:)from_u128(1);

while (i < 255) {
let k = f(x0, y);
let _dy = u256:)zero();
let cmp = u256:)compare(&k, &xy);
if (cmp =) 1) {

_dy = u256:)add(
u256:)div(

u256:)sub(xy, k),
d(x0, y),

),
one_u256 /) Round up

);
y = u256:)add(y, _dy);

} else {
_dy = u256:)div(

u256:)sub(k, xy),

Zellic 10 Pontem Network



d(x0, y),
);
y = u256:)sub(y, _dy);

};
cmp = u256:)compare(&_dy, &one_u256);
if (cmp =) 0 |) cmp =) 1) {

return y
};

i = i + 1;
};

y
}

This implementation uses Newton’s method to iteratively find a y value given an initial
guess. However, the criteria the function uses to find when it converges will result
in slightly unstable outputs: The result of get_y differs slightly on different starting
conditions. Consider the following:

get_y(u256:)from_u128(138), u256:)from_u128(200000000),
u256:)from_u128(40));

get_y(u256:)from_u128(138), u256:)from_u128(200000000),
u256:)from_u128(50));

get_y(u256:)from_u128(138), u256:)from_u128(200000000),
u256:)from_u128(60));

While the first and third return 63, the second returns 64. The true result should be
approximately 62.98; the initial condition of 50 results in an incorrect result, even if we
suppose get_y should round upwards.

Impact

The incorrect get_y values lead to slightly incorrect calculations by coin_in and coin_
out. The goal of coin_out is to return the amount of output a user should receive given
reserve states and an input quantity. However, the value it returns can be too low:

coin_out(47, 100000000, 100000000, 10000, 15674);

This call returns 47, but a user could actually extract 48 coins from the pool while still

Zellic 11 Pontem Network



increasing the liquidity pool value.

Recommendations

First, the desired behavior of get_y should be better documented. At themoment, it is
unclearwhether it should round up or round down. Based on this decision, the update
and stopping criteria for get_y should be adjusted. Currently, if the adjustment for y
is less than or equal to one in a given iteration, the function assumes it has converged
and returns.

Remediation

Pontem Network fixed this issue in commit 0b01ed6

Zellic 12 Pontem Network

https://github.com/pontem-network/liquidswap/commit/0b01ed696b13b3182a7c6913188bea4cf5c396c5


3.2 Implicit precision loss in stable_curve:)lp_value

• Target: liquidswap::stable_curve
• Category: Business Logic
• Likelihood: Low

• Severity: Low
• Impact: Low

Description

In stable_curve:)lp_value, coins with more than eight decimals experience implicit
precision loss. The current implementation returns the LP value scaled by (10 ^ 8) ^
4 in order to maintain precision across division:

public fun lp_value(x_coin: u128, x_scale: u64, y_coin: u128, y_scale:
u64): U256 {
let x_u256 = u256:)from_u128(x_coin);
let y_u256 = u256:)from_u128(y_coin);
let u2561e8 = u256:)from_u128(ONE_E_8);

let x_scale_u256 = u256:)from_u64(x_scale);
let y_scale_u256 = u256:)from_u64(y_scale);

let _x = u256:)div(
u256:)mul(x_u256, u2561e8),
x_scale_u256,

);

let _y = u256:)div(
u256:)mul(y_u256, u2561e8),
y_scale_u256,

);

let _a = u256:)mul(_x, _y);

/) ((_x * _x) / 1e18 + (_y * _y) / 1e18)
let _b = u256:)add(

u256:)mul(_x, _x),
u256:)mul(_y, _y),

);

u256:)mul(_a, _b)
}

Zellic 13 Pontem Network



However, this means that stable_curve:)lp_valuewill return inaccurate values when
coins have more decimals.

Impact

Loss of precision in LP value calculations can cause fees to be unexpectedly high: Sit-
uations where a swap would theoretically increase LP value might fail. This precision
loss will also affect the accuracy of router functions.

Recommendations

When coins have more than eight decimals, either rounding should be handled ex-
plicitly or they should be disallowed from the protocol.

Another option is to use the numerator max(x_scale, y_scale) instead of 10 ^ 8 to
mitigate precision loss. Still, coins with unusually high precision would need to be
either disallowed or explicitly considered in order to avoid overflow problems.

Remediation

This issue has been acknowledged by Pontem Network.

Zellic 14 Pontem Network



3.3 Incorrect rounding behavior in router:)get_coin_in_with_
fees

• Target: liquidswap::router
• Category: Coding Mistakes
• Likelihood: Low

• Severity: Low
• Impact: Low

Description

In the function router:)get_coin_in_with_fees, the result is rounded up incorrectly
for both stable and uncorrelated curves, which can lead to an undue amount being
paid in fees.

The formula for rounding up integer division is (n - 1)/d + 1 for n > 0.

let coin_in = (stable_curve:)coin_in(
(coin_out as u128),
scale_out,
scale_in,
(reserve_out as u128),
(reserve_in as u128),

) as u64) + 1;

(coin_in * fee_scale / fee_multiplier) + 1

The stable curve branch of router:)get_coin_in_with_fees does not correctly imple-
ment the formula stated above.

let coin_in = math:)mul_div(
coin_out, /) y
reserve_in * fee_scale, /) rx * 1000
new_reserves_out /) (ry - y) * 997

) + 1;

Furthermore, the uncorrelated curve branch also incorrectly implements the formula
stated above.

Impact

For certain swap amounts, a user could end up paying more in fees than would be
accurate.

Zellic 15 Pontem Network



Recommendations

In the case of the stable curve branch of router:)get_coin_in_with_fees, the code
should be rewritten to adhere to the rounded up integer division formula.

let coin_in = (stable_curve:)coin_in(
(coin_out as u128),
scale_out,
scale_in,
(reserve_out as u128),
(reserve_in as u128),

) as u64);

let n = coin_in * fee_scale;

if (n > 0) {
((n - 1) / fee_multiplier) + 1

} else {
0

}

Likewise, the uncorrelated curve branch also needs a revision.

/) add to liquidswap:)math
public fun mul_div_rounded_up(x: u64, y: u64, z: u64): u64 {

assert!(z !) 0, ERR_DIVIDE_BY_ZERO);
let n = (x as u128) * (y as u128);
let r = if (n > 0) {

((n - 1) / (z as u128)) + 1
} else {

0
}
(r as u64)

}

let coin_in = math:)mul_div_rounded_up(
coin_out, /) y
reserve_in * fee_scale, /) rx * 1000
new_reserves_out /) (ry - y) * 997

);

Zellic 16 Pontem Network



Remediation

Pontem Network fixed this issue in commit 0b01ed6

Zellic 17 Pontem Network

https://github.com/pontem-network/liquidswap/commit/0b01ed696b13b3182a7c6913188bea4cf5c396c5


3.4 lp_account:)retrieve_signer_cap should be a friend to liq
uidity_pool

• Target: liquidswap::lp_account
• Category: Coding Mistakes
• Likelihood: Low

• Severity: Low
• Impact: Low

Description

The function lp_account:)retrieve_signer_cap can currently be called by any mod-
ule. If lp_account:)retrieve_signer_cap is called by a function other than liquidity_
pool:)initialize, then the initialization process of Liquidswapwill be unable tomove
forward.

Impact

The initialization of Liquidswap can be griefed. This will make liquidswap inaccessible
to any users.

Recommendations

The function lp_account:)retrieve_signer_cap needs to be marked as pub(friend),
and the module liquidswap:)liquidity_pool needs to be added as a friend to liquid
swap:)lp_account.

Remediation

This issue has been acknowledged by Pontem Network.

Zellic 18 Pontem Network



4 Formal Verification

The Move language is designed to support formal verifications against specifications.
Currently, there are a number of these written for the liquidswap:)mathmodule. We
encourage further verification of contract functions as well as some improvements to
current specifications. Here are some examples.

4.1 liquidswap:)math

First, the specification for math:)overflow_add could be improved. The purpose of this
function is to add u128 integers, but allowing for overflow.

spec overflow_add {
ensures result <) MAX_U128;
ensures a + b <) MAX_U128 ==> result =) a + b;
ensures a + b > MAX_U128 ==> result !) a + b;
ensures a + b > MAX_U128 &) a < (MAX_U128 - b) ==> result =) a -
(MAX_U128 - b) - 1;
ensures a + b > MAX_U128 &) b < (MAX_U128 - a) ==> result =) b -
(MAX_U128 - a) - 1;
ensures a + b <) MAX_U128 ==> result =) a + b;

}

However, this does not reflect how the function should work conceptually. Instead,
consider the following specification:

spec overflow_add {
///)) The function should never abort.
aborts_if false;

///)) Addition should overflow if the sum exceeds `MAX_U128`
ensures result =) (a + b) % (MAX_U128 + 1);

}

This checks that the function cannot abort and makes the desired functionality more
clear.

Zellic 19 Pontem Network



4.2 liquidswap:)emergency

Another strong application for the prover is in liquidswap:)emergency. This module
provides a way to pause and resume operations as well as a way to disable itself.
The emergency:)disable_forever function is intended to be permanent, and that can
actually be proven:

spec liquidswap:)emergency {
invariant update old(is_disabled()) ==> is_disabled();

}

Essentially, this claims that across updates to storage, the emergency module cannot
change from disabled to enabled.

Zellic 20 Pontem Network



5 Discussion

The purpose of this section is to document miscellaneous observations that we made
during the assessment.

5.1 Test coverage missing for stable_curve:)get_y

The function stable_curve:)get_y is currently missing test coverage and is highly sus-
ceptible to imprecise behavior because of the nature of its implementation. We rec-
ommend tests are added for stable_curve:)get_y to ensure that its behavior is ex-
pected.

5.2 Tests fail after breaking Aptos change

Under Aptos Move version 0.3.5 and the commit hash of this audit, a majority of tests
fail to run. However, the tests do pass under an older version of Aptos Move. We
recommend making the necessary changes to Liquidswap so that the tests pass on
the latest version of Aptos Move.

5.3 Outdated comments

Some comments throughout the project do not reflect the current state of the code.

Comments containing mathematical descriptions such as /) ((_x * _x) / 1e18 + (_
y * _y) / 1e18) in stable_curve:)lp_value are not accurate and can lead to confu-
sion when reading the project’s code.

5.4 Unused struct member in liquidity_pool:)Flashloan

The pool_addr: address member of liquidity_pool:)Flashloan is unnecessary and
unused. This member is likely a remnant of older code, and we recommend it be
removed.

Zellic 21 Pontem Network



5.5 Flashloan implementation depends on Aptos VM correct-
ness

The implementation of flashloans in Liquidswap is correct; however, it depends heav-
ily on the correctness of the Aptos VM and its bytecode verifier.

5.6 Liquidswap allows any tokens and pools to be made

Any user is able to make a pool with any two tokens. Depending on the implemen-
tation of the frontend of Liquidswap, this could lead to confusion as pools could be
madewith fake tokens that share nameswith real tokens. We recommend an allowlist
for pools that are displayed in the frontend.

Zellic 22 Pontem Network



6 Audit Results

At the time of our audit, the code was not deployed.

During our audit, we discovered four findings. Of these, all were low risk. Pontem
Network acknowledged all findings and implemented fixes.

6.1 Disclaimers

This assessment does not provide any warranties about finding all possible issues
within its scope; in other words, the evaluation results do not guarantee the absence
of any subsequent issues. Zellic, of course, also cannot make guarantees about any
additional code added to the assessed project after the audit version of our assess-
ment. Furthermore, because a single assessment can never be considered compre-
hensive, we always recommendmultiple independent assessments pairedwith a bug
bounty program.

For each finding, Zellic provides a recommended solution. All code in these recom-
mendations are intended to convey how an issue may be resolved (i.e., the idea), but
they may not be tested or functional code.

Finally, the contents of this assessment report are for informational purposes only;
do not construe any information in this report as legal, tax, investment, or financial
advice. Nothing contained in this report constitutes a solicitation or endorsement of
a project by Zellic.

Zellic 23 Pontem Network


	About Zellic
	Executive Summary
	Introduction
	About Liquidswap
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	Inaccuracy in liquidswap::stable_curve computations
	Implicit precision loss in stable_curve::lp_value
	Incorrect rounding behavior in router::get_coin_in_with_fees
	lp_account::retrieve_signer_cap should be a friend to liquidity_pool

	Formal Verification
	liquidswap::math
	liquidswap::emergency

	Discussion
	Test coverage missing for stable_curve::get_y
	Tests fail after breaking Aptos change
	Outdated comments
	Unused struct member in liquidity_pool::Flashloan
	Flashloan implementation depends on Aptos VM correctness
	Liquidswap allows any tokens and pools to be made

	Audit Results
	Disclaimers


