
Audit
Pontem Liquidswap

Presented by:

OtterSec contact@osec.io

Fineas Silaghi fedex@osec.io

Robert Chen notdeghost@osec.io

mailto:contact@osec.io
mailto:fedex@osec.io
mailto:notdeghost@osec.io

Contents
01 Executive Summary 2

Overview . 2
Key Findings . 2

02 Scope 3

03 Findings 4

04 Vulnerabilities 5
OS-PLS-ADV-00 [crit] [resolved] | Broken Stable Curve Math . 6
OS-PLS-ADV-01 [high] [resolved] | Unstrict Swap Invariant . 8

05 General Findings 9
OS-PLS-SUG-00 [resolved] | Unsynchronized Update and Event Emission 10
OS-PLS-SUG-01 [resolved] | Incorrect DaoStorage Event Type 11
OS-PLS-SUG-02 [resolved] | Accessible Locked Pool . 12

06 Formal Verification 13
OS-PLS-VER-00 | Liquidity Pool . 14
OS-PLS-VER-01 | Emergency . 15
OS-PLS-VER-02 | U256 . 16

Appendices

A Program Files 17

© 2022 OtterSec LLC. All Rights Reserved. 1 / 17

01 | Executive Summary

Overview

Pontem engaged OtterSec to perform an assessment of the liquidswap program. This assessment was
conducted between August 8th and September 2nd, 2022.

Critical vulnerabilities were communicated to the team prior to the delivery of the report to speed up
remediation. After delivering our audit report, weworked closely with the teamover to streamline patches
and confirm remediation.

We delivered final confirmation of the patches September 5th, 2022.

Key Findings

The following is a summary of the major findings in this audit.

• 8 findings total
• 2 vulnerabilities which could lead to loss of funds

– OS-PLS-ADV-00: Broken Stable Curve Math
– OS-PLS-ADV-01: Unstrict Swap Invariant

© 2022 OtterSec LLC. All Rights Reserved. 2 / 17

02 | Scope
The source code was delivered to us in a git repository at github.com/pontem-network/pontem-network-
liquidswap. This audit was performed against commit 9cd6904.

There were a total of one program included in this audit. A brief description of the program is as follows. A
full list of program files and hashes can be found in Appendix A.

Name Description

liquidswap Automated Market Maker protocol that supports both Uncorrelated and Stable curves.

© 2022 OtterSec LLC. All Rights Reserved. 3 / 17

03 | Findings
Overall, we report 8 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings don’t have an immediate impact but will
help mitigate future vulnerabilities.

The below chart displays the findings by severity.

Severity Count

Critical 1
High 1

Medium 0
Low 0

Informational 6

© 2022 OtterSec LLC. All Rights Reserved. 4 / 17

04 | Vulnerabilities
Here we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-
bilities have immediate security implications, and we recommend remediation as soon as possible.

ID Severity Status Description

OS-PLS-ADV-00 Critical Resolved Stable curve math is broken

OS-PLS-ADV-01 High Resolved Swaps should use strict comparison for lp_value

© 2022 OtterSec LLC. All Rights Reserved. 5 / 17

Pontem Liquidswap Audit 04 | Vulnerabilities

OS-PLS-ADV-00 [crit] [resolved] | Broken Stable Curve Math

Description

The liquidity_pool::compute_and_verify_lp_value function, checks if the lp value is the
same before and after a swap. When dealing with a stable curve, the lp value before the swap, is calculated
incorrectly.

sources/swap/liquidity_pool.move

if (curve_type == STABLE_CURVE) {
let lp_value_before_swap = stable_curve::lp_value(x_res, x_scale,

y_res, y_scale);↪→

// 100000000 == FEE_SCALE * FEE_SCALE
lp_value_before_swap = u256::mul(

lp_value_before_swap,
u256::from_u128(100000000),

);

The stable_curve::lp_value function conducts mathematical operations using decimals with 8
digits precision. Several calculations, contain additional divisions by 10^8, which are not needed. These
unnecessary operations affect the returning value which implicitly affects the returning amount from a
swap transaction.

sources/libs/stable_curve.move

let u2561e8 = u256::from_u128(ONE_E_8);

[...]

let _b = u256::add(
u256::div(

u256::mul(_x, _x),
u2561e8,

),
u256::div(

u256::mul(_y, _y),
u2561e8,

)
);

Proof of Concept

Given the stable curve: x^3*y + x*y^3, consider the following test case:

© 2022 OtterSec LLC. All Rights Reserved. 6 / 17

Pontem Liquidswap Audit 04 | Vulnerabilities

1. x = 500000899318256

2. y = 25000567572582123

3. lp_value = lp_value(x, 1000000, y, 1000000000000)

4. assert!(u256::as_u128(lp_value) == 312508781701599715772530613362069248234)

The returnedlp_value is incorrect, thecorrect value shouldbe312508781701599715772756132553838833260.

Let’s also consider the following scenario, derived from an existing test case:

1. A liquidity pool contains 10 BTC and 10000 USDT coins.

2. An attacker swaps a very small amount of btc

Remediation

The issue can be fixed by removing the multiplication between the lp_value_before_swap and
100000000and theunnecessarydivisions fromthestable_curve::lp_value,stable_curve::d
and stable_curve::f functions.

Patch

Resolved in commit 5349aa7 and 637ad72.

© 2022 OtterSec LLC. All Rights Reserved. 7 / 17

https://github.com/pontem-network/pontem-network-liquidswap/commit/5349aa7f90709c721cd45473f9f59322a5c22986
https://github.com/pontem-network/pontem-network-liquidswap/commit/637ad725c9d28d9b3f4b810de1fd25536d94d58c

Pontem Liquidswap Audit 04 | Vulnerabilities

OS-PLS-ADV-01 [high] [resolved] | Unstrict Swap Invariant

Description

When dealing with an uncorrelated curve, the program introduced an error by reporting an incorrect swap
if the lp_value after the swap is strictly smaller than the lp_value before the swap. The swap should
be valid only when the value after is greater than the value before.

Otherwise, swapping would be able to exploit potential rounding errors, depending on the precision of
the relevant curves.

Some napkin math implies that the imprecision is nontrivial. For a token with 8 decimals, the stable swap
mathwould give up to 1,000,000 atomic units of imprecision. This would represent up to 1%of the original
token’s value, which

sources/swap/liquidity_pool.move

assert!(
lp_value_after_swap_and_fee >= lp_value_before_swap,
ERR_INCORRECT_SWAP,

);

Remediation

The incorrect assert can be fixed by making the condition strictly greater.

sources/libs/stable_curve.move

+ let cmp = u256::compare(&lp_value_after_swap_and_fee,
&lp_value_before_swap_u256);↪→

+ assert!(cmp == GREATER_THAN, ERR_INCORRECT_SWAP);

Patch

Resolved in commit 637ad72.

© 2022 OtterSec LLC. All Rights Reserved. 8 / 17

https://github.com/pontem-network/pontem-network-liquidswap/commit/637ad725c9d28d9b3f4b810de1fd25536d94d58c

05 | General Findings
Here we present a discussion of general findings during our audit. While these findings do not present
an immediate security impact, they do represent antipatterns and could introduce a vulnerability in the
future.

ID Status Description

OS-PLS-SUG-00 Resolved Update event emitted out of sync with the actual update code block.

OS-PLS-SUG-01 Resolved Deposited event emitted instead of withdrawn event in withdraw func-
tion.

OS-PLS-SUG-02 Resolved Ability to call getter functions in liquidity pool during flashloan lock.

© 2022 OtterSec LLC. All Rights Reserved. 9 / 17

Pontem Liquidswap Audit 05 | General Findings

OS-PLS-SUG-00 [resolved] | Unsynchronized Update and Event Emission

Description

The liquidity_pool::update_oracle function emits an event of type OracleUpdatedEvent
once the update is finalized. The problem is that the place from where the event is launched can be
reached even when the update has not happened.

sources/libs/stable_curve.move

[...]

if (time_elapsed > 0 && x_reserve != 0 && y_reserve != 0) {
[...]

pool.last_price_x_cumulative = *&pool.last_price_x_cumulative +
last_price_x_cumulative;↪→

pool.last_price_y_cumulative = *&pool.last_price_y_cumulative +
last_price_y_cumulative;↪→

};

pool.last_block_timestamp = block_timestamp;

let events_store = borrow_global_mut<EventsStore<X, Y, LP>>(pool_addr);
event::emit_event(

&mut events_store.oracle_updated_handle,
OracleUpdatedEvent<X, Y, LP> {

last_price_x_cumulative: pool.last_price_x_cumulative,
last_price_y_cumulative: pool.last_price_y_cumulative,

});

Remediation

Move the code sequence responsible for emitting the event at the end of the if block from above.

Patch

Event emit moved right after the update has happened, resolved in 637ad72.

© 2022 OtterSec LLC. All Rights Reserved. 10 / 17

https://github.com/pontem-network/pontem-network-liquidswap/commit/637ad725c9d28d9b3f4b810de1fd25536d94d58c

Pontem Liquidswap Audit 05 | General Findings

OS-PLS-SUG-01 [resolved] | Incorrect DaoStorage Event Type

Description

The function dao_storage::withdraw emits an incorrect event type, CoinDepositedEvent,
when the withdraw functionality is completed.

Remediation

Change theeventhandle tocoin_withdrawn_handleand theevent type toCoinWithdrawnEvent.

sources/swap/dao_storage.move

event::emit_event(
+ &mut events_store.coin_withdrawn_handle,
+ CoinWithdrawnEvent<X, Y, LP>{ x_val, y_val }

);

Patch

Issue resolved in637ad72by replacing theCoinDepositedEventevent typewithCoinWithdrawnEvent
and the handle coin_deposited_handlewith the proper coin_withdrawn_handle.

© 2022 OtterSec LLC. All Rights Reserved. 11 / 17

https://github.com/pontem-network/pontem-network-liquidswap/commit/637ad725c9d28d9b3f4b810de1fd25536d94d58c

Pontem Liquidswap Audit 05 | General Findings

OS-PLS-SUG-02 [resolved] | Accessible Locked Pool

Description

When a flashloan transaction is performed, the pool that is used is being locked. However, functions such
as get_reserves_size and get_cumulative_prices can still access the pool due to the lack of
sufficient checks.

Remediation

Insert at the top of the functions an assert to prevent the functions from being used during flashloans.

sources/swap/liquidity_pool.move

public fun get_reserves_size<X, Y, LP>(pool_addr: address): (u64, u64)
acquires LiquidityPool {

assert_no_emergency();
+ assert_pool_locked<X, Y, LP>(pool_addr);

Patch

Resolved in 8eacbb1 by including the suggested assert in both functions.

© 2022 OtterSec LLC. All Rights Reserved. 12 / 17

https://github.com/pontem-network/pontem-network-liquidswap/commit/8eacbb194045ed53f7a682614287b4943aee7b61

06 | Formal Verification

Here we present recommendations and example specifications for formal verification of contracts.

ID Description

OS-PLS-VER-00 Recommendations for liquidity_pool.move

OS-PLS-VER-01 Recommendations for emergency.move

OS-PLS-VER-02 Recommendations for u256.move

© 2022 OtterSec LLC. All Rights Reserved. 13 / 17

Pontem Liquidswap Audit 06 | Formal Verification

OS-PLS-VER-00 | Liquidity Pool

Specifications

1. Flashloan Data Invariants. Ensure all loans have at least some value.

sources/swap/liquidity_pool.move RUST

spec Flashloan {
invariant x_loan > 0 || y_loan > 0;

}

2. No free money theorem. A series of swaps should never arbitrarily increase a pool’s token balances.
Note that to write a specification for this, you will need to verify the internal math libraries.

sources/swap/liquidity_pool.move RUST

spec test_swap {
ensures !result_1;

}

fun test_swap<X, Y, LP>(
pool_addr: address,
x_in: Coin<X>,
x_out: u64,
y_in: Coin<Y>,
y_out: u64,
x_nxt: u64,
y_nxt: u64

): (bool, Coin<X>, Coin<Y>) acquires LiquidityPool, EventsStore {
let x_init = coin::value(&x_in);
let y_init = coin::value(&y_in);

let (coin_x, coin_y) = swap<X, Y, LP>(pool_addr, x_in, x_out,
y_in, y_out);↪→

let (coin_x, coin_y) = swap<X, Y, LP>(pool_addr, coin_x, x_nxt,
coin_y, y_nxt);↪→

let free_money = coin::value(&coin_x) >= x_init &&
coin::value(&coin_y) > y_init;
(free_money, coin_x, coin_y)

↪→

↪→

}

© 2022 OtterSec LLC. All Rights Reserved. 14 / 17

Pontem Liquidswap Audit 06 | Formal Verification

OS-PLS-VER-01 | Emergency

Specifications

1. Explicate when key functions can abort. For example, queries for emergency state should never
abort.

sources/swap/emergency.spec.move RUST

spec liquidswap::emergency {
spec is_emergency {

aborts_if false;
}

spec is_disabled {
aborts_if false;

}
}

It should also be possible to explicate abort conditions of more complex functions. For example,
pause should abort if and only if there is an emergency, it’s already disabled, Emergency has
already been initialized, or the incorrect signer is passed.

© 2022 OtterSec LLC. All Rights Reserved. 15 / 17

Pontem Liquidswap Audit 06 | Formal Verification

OS-PLS-VER-02 | U256

Specifications

1. Verify that the U256 structs are isomorphic to the natural numbers. Note that because Move Prover
numbers are unbounded, it is relatively easy to construct these relationships.

sources/u256.move RUST

spec fun real_val(a: U256): num {
a.v0

+ (a.v1 << 64)
+ (a.v2 << 128)
+ (a.v3 << 192)

}

spec add_test {
pragma opaque;
ensures real_val(result) == (real_val(a) + real_val(b));

}

Note howwedefine areal_val functionwhichmapsU256 structs onto the native natural number
representation. In order for the Move Prover to terminate, you may also need to unroll the loop
used in add.

2. Explicate error conditions for arithmetic functions. For example, add and mul should only abort if
the product exceeds the maximum representable U256 value. Similarly, div should only abort if
the operand is zero.

3. Verify that conversion to and from Move native numeric types with the as_u64 and from_u64
functions operate as expected.

© 2022 OtterSec LLC. All Rights Reserved. 16 / 17

A | Program Files

Below are the files in scope for this audit and their corresponding SHA256 hashes.

Move.toml e976e116aee0da5c319e6186e1406a8c
sources

libs
coin_helper.move f51ac07f2060348d6878e357cb291d22
compare.move f3d14171fd38329ba1f43dd96b2ca901
math.move e21502bec25aa18ce04dd705fbec3b06
stable_curve.move 09b7cc72c287e455c4677d8996197f5f

swap
dao_storage.move ee17a7d434413253e1b1f7702cc92314
emergency.move 094d7f2ba067ec58f013421c9dadd384
liquidity_pool.move 7125ff40022b3ae57e99c1a0db1561a1
router.move f1b31af7b33fdc16d3af47fe8269fe4f
scripts.move 8c4118a6863fb64d61c0a42d8804e99c

test_helpers
test_account.move 576d9389d3459ae9fb0730afb6ee1042
test_coins.move 41593b6e772f517887d800390b8ccb79
test_lp.move 832bea42230bb33f467ba20acea05087

tests
coin_helper_tests.move bd118a7245ededbbcb5434ec76fdd903
dao_storage_tests.move 200299d1bc5cf114a5950bbb4553986d
emergency_tests.move ca2239bfee7194aef0e9a3317f9da42f
flashloan_tests.move 0d1b0a39335f87f5c24aa9f114cf411b
liquidity_pool_tests.move 53db4a96705ff4f1675e4ca345fdd0eb
math_tests.move 92b76a15e2867cc5dfdcde1fabfc014a
router_tests.move 7e65feb21f7a503d23fc4fd379e5cc27
scripts_tests.move 336b20dc02351843b1909a85cb0f495f

© 2022 OtterSec LLC. All Rights Reserved. 17 / 17

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	OS-PLS-ADV-00 [crit] [resolved] | Broken Stable Curve Math
	OS-PLS-ADV-01 [high] [resolved] | Unstrict Swap Invariant

	General Findings
	OS-PLS-SUG-00 [resolved] | Unsynchronized Update and Event Emission
	OS-PLS-SUG-01 [resolved] | Incorrect DaoStorage Event Type
	OS-PLS-SUG-02 [resolved] | Accessible Locked Pool

	Formal Verification
	OS-PLS-VER-00 | Liquidity Pool
	OS-PLS-VER-01 | Emergency
	OS-PLS-VER-02 | U256

	Appendices
	Program Files

